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Introduction

Microorganisms, including prokaryotic actinobacteria and 
eukaryotic ascomycetes, are prominent producers of a vari-
ety of biologically active natural products [17, 18]. As the 
topic of bacterial natural products is covered elsewhere in 
this JIMB Special Issue on Microbial Genome Mining, we 
are focusing on natural products produced by filamentous 
fungi belonging to the phylum Ascomycota. These com-
pounds are also termed secondary metabolites because they 
are not essential for the organism’s growth under labora-
tory conditions [30, 79]. However, the maintenance of the 
genetic information allowing fungi to produce secondary 
metabolites suggests that these small molecules provide 
essential benefits, e.g. against predation [139] and hostile 
environmental conditions [55]. Apart from providing evo-
lutionary fitness to the producing organism in their natural 
habitat, many secondary metabolites are of major impor-
tance to humankind owing to their beneficial and deleteri-
ous effects as drugs and toxins. Beneficial fungal secondary 
metabolites have a wide range of applications, including 
antibiotics (penicillin and cephalosporin [52]), immunosup-
pressants (cyclosporins [140]), cholesterol-lowering drugs 
(statins [115]), angiogenesis inhibitors (fumagillin deriva-
tives and pseurotin derivatives [5, 15]), anti-osteoporosis 
agents (orsellinic acid derivatives F-9557 A and B [23]), 
anti-migraine and hypertension-lowering medications 
(ergot alkaloids [73]), plant growth hormones (gibberel-
lins [27]) and food additives (carotenoids [7]). Deleteri-
ous effects of fungal secondary metabolites are most often 
attributed to their carcinogenic (aflatoxins, fumonisins 
[107, 170]), apoptotic (gliotoxin, deoxynivalenol [97, 172]) 
and mutagenic (fusarins [157]) activities as well as ability 
to cause plant disease (e.g. T-toxin and cercosporin [9, 47]) 
thereby contributing to reduced harvest yields.
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This review will focus on the latest advances that con-
tribute to our current understanding of the genetic basis for 
production and regulation of these heterogeneous small 
molecular weight substances and how this knowledge can 
help to identify and activate cryptic secondary metabolites 
in fungal genomes efficiently. We also direct the reader to 
other recent reviews on this topic for additional insights 
into fungal secondary metabolism [30, 184].

Chemical classes of secondary metabolites

The heterogeneous secondary metabolites produced by 
fungi can generally be classified into four distinct chemi-
cal categories: polyketides (e.g. aflatoxins), non-ribosomal 
peptides (e.g. penicillin), terpenes (e.g. gibberellins) and 
prenylated tryptophan derivatives (e.g. ergot and indole 
alkaloids) [79]. Additionally, hybrids between these classes 
have been identified in several fungal species (e.g. fuma-
gillin, pseurotin [104, 114]). Production of each class of 
secondary metabolite requires specific backbone enzymes 
providing the chemical scaffold, hence named polyke-
tide synthases (PKSs), non-ribosomal peptide synthetases 
(NRPSs), terpene synthases/cyclases (TCs) and dimethy-
lallyl tryptophan synthases (DMATSs), respectively. In 
contrast to actinomycetes which were shown to harbour 
modular type I PKS, type II PKS and type III PKS in their 
genomes, in ascomycetes iterative type I PKS and type 
III PKS have been identified so far [6, 82, 86, 154, 173]. 
In filamentous fungi, production of polyketide/non-ribo-
somal peptide hybrids involves one respective chimeric 
PKS/NRPS enzyme if only a single amino acid is incorpo-
rated into the final product [21]. In cases where the hybrid 
molecule contains more than one amino acid moiety, two 
distinct enzymes, one PKS and one NRPS, are involved 
in the biosynthesis [44]. Similarly, meroterpenoids (pol-
yketide/terpene hybrids) are assembled by two distinct 
enzymes [46, 84, 104, 108]. Some secondary metabolites 
like loline alkaloids do not involve any of the backbone 
enzymes mentioned above despite their structural related-
ness to non-ribosomal peptides [160]. Examples of promi-
nent fungal secondary metabolites of each chemical class 
are given in Fig. 1.

Secondary metabolite gene clusters

A hallmark trait of fungal secondary metabolites is that the 
genes required for modification of the chemical scaffold, 
transport of substrates and/or products, specific regulatory 
functions and resistance are usually contiguously aligned 
in the genome leading to the concept of secondary metabo-
lite gene clusters [79, 90]. The first fungal gene cluster to 

be identified was the penicillin cluster in Penicillium chry-
sogenum and Aspergillus nidulans [54, 111, 156]. Before 
genome sequences became readily available for fungal spe-
cies, evidence for contiguous aligned genes responsible 
for the aflatoxin precursor sterigmatocystin [35], melanins 
[95], trichothecenes [80], gibberellins [168] and fumoni-
sins [53] consolidated the view of secondary metabolite 
gene clusters in fungi as a common trait. Interestingly, fila-
mentous fungi share this hallmark trait with Gram-positive 
bacteria belonging to the phylum Actinobacteria [16, 83, 
119, 126, 128]. Advances in fungal secondary metabolism 
have shown deviations of this strict motif. Genes respon-
sible for production of the A. nidulans spore pigment and 
trichothecenes in Fusarium spp. are present in two distinct 
genomic positions [94]. Recent observations in A. nidu-
lans showed that prenylation of PKS- and NRPS-derived 
products can be executed by prenyltransferases (PTs) dis-
tantly located in the genome [4, 108, 144], whereas simi-
lar prenylations are carried out by PTs encoded within the 
core cluster in P. aethiopicum, Neosartorya fischeri and A. 
fumigatus [46, 96]. Also the genes required for T-toxin pro-
duction in Cochliobolus heterostrophus are located at least 
in two unlinked loci in the genome [9] and in one extreme 
example, the genes required for dothistromin synthesis are 
scattered throughout the genome [29]. Another feature that 
adds to a more complex view of the secondary metabolite 
gene cluster is the recent finding that some clusters can 
be intertwined leading to production of two distinct prod-
ucts [177]. Nevertheless, the canonical cluster hallmark is 
still a very useful motif to look for in mining new fungal 
genomes.

In silico identification of backbone enzymes and gene 
clusters by genome sequencing

The fact that the backbone enzymes involved in second-
ary metabolite production have specific protein sequence 
signatures facilitates the identification of their encoding 
genes in available genome sequences. Pioneering work in 
the first available filamentous fungal genome sequences 
of C. heterostrophus, Botrytis cinerea, Neurospora crassa, 
Fusarium verticillioides and F. graminearum showed the 
existence of 7–25 PKS-encoding genes in these Pezizo-
mycotina [98]. Later genome sequences of other Asco-
mycota showed a similar high number of genes encoding 
PKS, NRPS, TC and DMATS [3, 49, 65, 66, 99, 109, 116, 
120, 124, 133, 146, 169, 178]. More recently, the genome 
sequences of Basidiomycota have revealed the pres-
ence of several PKS-encoding genes [100] and additional 
large-scale fungal genome projects carried out at the Joint 
Genome Institute will most certainly reveal more backbone 
genes in the sequenced species [70]. Prediction of the gene 
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clusters corresponding to each backbone-enzyme-encoding 
gene has been eased by bioinformatics programs that iden-
tify cluster genes on the basis of genomic distance and pre-
dicted protein functions [20, 56, 92, 118]. However, given 
the complexity of some clusters as mentioned earlier, these 
programs can only hint at the potential secondary metabo-
lome of each fungal species. Additional genetic studies 
are pertinent for an accurate prediction of the extent and 
functionality of each cluster, which is the prerequisite for 
an efficient mining of the metabolites produced by each 
cluster. The following paragraphs will highlight the latest 
advances in prediction and activation of clusters by genetic 

means in the natural host and expression of putative clus-
ters in non-natural hosts. Comparable strategies have been 
successfully applied for actinomycetes as described else-
where in this JIMB Special Issue on Microbial Genome 
Mining and in other reviews [10, 11].

Activation of gene clusters in the natural host

Regulation of secondary metabolism occurs on multiple 
levels intimately linked to specific environmental cues. 
These complex regulatory networks are not surprising, 

Fig. 1  Select fungal secondary 
metabolites of various chemical 
classes derived by different 
biosynthetic routes. Top left 
(yellow) Structure of aflatoxin 
B1 as an example of a pol-
yketide derived by a PKS. Top 
right (red) NRPS-derived non-
ribosomal peptides, penicillin G 
and gliotoxin. Middle left (blue) 
Gibberellin A3 belonging to the 
class of terpenes, produced by 
TCs as the scaffold enzymes. 
Center (purple) Prenylated 
tryptophan derivative, agrocla-
vine; a DMATS-derived natural 
product also referred to as the 
class of alkaloids. Note Some 
prenylated tryptophan deriva-
tives can be fused to non-ribo-
somal peptides, e.g. ergotamine 
(not depicted). Middle right 
(grey) Structure of norloline. 
Its biosynthesis involves a 
pyridoxal-phosphate-containing 
enzyme and thereby differs 
from canonical non-ribosomal 
peptide assembly routes. Bot-
tom left (orange) polyketide/
non-ribosomal peptide hybrid 
compounds, emericellamide 
A and pseurotin A. Bottom 
right (green) Meroterpenoid 
(chimeric polyketide/terpene) 
natural products, fumagillin and 
austinol (color figure online)
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given that these natural compounds often have evolved 
to secure ecological niches [66, 146, 178], avoid preda-
tion [138] and defend against environmental stresses [55]. 
Expression of some clusters is therefore cryptic under 
standard laboratory growth conditions and needs to be trig-
gered to enable activation of the corresponding metabolite.

Cluster-specific activation

Since the discovery of the sterigmatocystin/aflatoxin gene 
cluster-specific zinc binuclear cluster (Zn(II)2Cys6) tran-
scription factor AflR that binds palindromic promoter 
sequences and is responsible for activation of all genes 
within the cluster [35, 39, 57, 182] several Zn(II)2Cys6 
narrow domain proteins have been identified within other 
secondary metabolite gene clusters [38, 151]. Prominent 
examples apart from AflR are GliZ responsible for activa-
tion of all but one gene in the gliotoxin cluster in A. fumig-
atus and its homologue, SirZ, in Leptosphaeria maculans 
responsible for sirodesmin production [24, 61], the fumoni-
sin activator Fum21 in F. verticillioides [33], Ctb8 respon-
sible for cercosporin cluster activation in Cercospora 
nicotianae [40], LovE in A. terreus needed for lovastatin 
gene expression [81], AzaR responsible for azanigerones 
production in A. niger [187] and Gip2, Bik5 and Fsr6 in 
F. graminearum and F. fujikuroi controlling respective pig-
ment production [93, 164, 179]. Deletion of the encoding 
genes has been successfully applied to localize cluster 
borders of the respective secondary metabolite clusters, 
establishing Zn(II)2Cys6 proteins as specific secondary 
metabolite cluster activators. Hence, several labs have uti-
lized cluster Zn(II)2Cys6 genes to activate otherwise cryp-
tic clusters in a natural host. For example, induced expres-
sion of A. nidulans apdR—encoding a Zn(II)2Cys6 protein 
and located in the subsequently characterized aspyridone 
cluster—led to activation of the aspyridone cluster and con-
comitant production of the PKS/NRPS hybrid metabolite 
[19]. Following this example, asperfuranone, monodicty-
phenone and ent-pimara-8(14),15-diene were discovered as 
products of the otherwise silent gene clusters in A. nidulans 
which are all activated by inducing the cluster-embedded 
Zn(II)2Cys6 gene [32, 42, 43]. Similar approaches were 
successful in other fungal species, i.e. for the discov-
ery of fusarielins in F. graminearum [158], the virulence 
enhancer hexadehydroastechrome in A. fumigatus [185], 
neosartoricin/fumicycline B in A. fumigatus and Neosarto-
rya fischeri, respectively [45, 96], and two novel metabo-
lites of F. fujikuroi [178] (Table 1).

Global regulators

In addition to the narrow domain Zn(II)2Cys6 cluster 
activators described, global regulatory proteins represent 

another higher level of regulatory modulation of secondary 
metabolism. The signature hallmark of global regulation 
of fungal secondary metabolism was the discovery of the 
nuclear protein LaeA in Aspergillus spp. [2, 22, 26]. LaeA 
was found to be part of a protein complex with the fungal 
developmental regulatory protein VeA in A. nidulans [14], 
and subsequently in other filamentous fungi [78, 87, 176, 
183], thereby connecting fungal development to second-
ary metabolism [13]. No other global regulatory protein 
has been used as successfully as LaeA and its orthologues 
to activate cryptic secondary metabolite gene clusters and 
increment their borders [85]. Deletion and overexpression 
in A. nidulans led to prediction and demarcation of sev-
eral clusters and identification of the novel anti-tumour 
compound terrequinone A [25, 28]. In other genera similar 
approaches were implemented that led to discovery of the 
novel product ML-236B in P. citrinum [8, 25] and the dis-
covery of several new secondary metabolites and gene clus-
ters in A. fumigatus, A. flavus, F. verticillioides and Monas-
cus pilosus [36, 67, 102, 134], some of which were later 
attributed to production of endocrocin, hexadehydroast-
echrome, fusaric acid and a duplicated set of tyrosine-
derived alkaloids, respectively [34, 59, 103, 185] (Table 1).

Although LaeA is the most famous regulator regarding 
secondary metabolism, its mode of action remains enig-
matic. The nuclear protein, which has homology to meth-
yltransferases, was shown to perform automethylation at a 
methionine residue that is dispensable for biological func-
tion [132]. There is evidence that LaeA counteracts silenc-
ing heterochromatic marks in the aflR promoter region 
[136] as well as being required for full establishment of 
activating euchromatic marks at several secondary metabo-
lite gene clusters in A. nidulans [159] making a connection 
to chromatin remodelling feasible. Furthermore, a recent 
study in A. orzyae has demonstrated that some histone dea-
cetylases may impact secondary metabolism through regu-
lation of laeA expression [88].

Histone and protein modification

A variety of modifications are known to act on proteins 
thereby affecting gene expression globally. For example, 
gene expression has been associated with acetylation of 
histone H3 lysine 9 (H3K9ac) and dimethylation of his-
tone H3 lysine 4 (H3K4me2), whereas gene silencing has 
been associated with trimethylation of histone H3 lysine 
9 (H3K9me3) [12, 48, 130, 163]. Additionally, sumoyla-
tion of histones and histone-modifying enzymes affects 
gene expression globally [162, 167] and the overall pro-
tein turnover is mediated by ubiquitination [175]. In several 
filamentous fungi chromatin modifications were shown to 
influence the production of different secondary metabo-
lites and helped to demarcate known and orphan clusters  



305J Ind Microbiol Biotechnol (2014) 41:301–313 

1 3

Table 1  Methods used to 
identify secondary metabolite 
clusters and their products in 
fungi

Metabolite Organism Reference

Cluster-specific activation

 Apicidin-like F. fujikuroi [178]

 Asperfuranone A. nidulans [43]

 Aspyridone A. nidulans [19]

 Azanigerones A. niger [187]

 ent-Pimara-8(14),15-diene A. nidulans [32]

 Fumicycline A and B A. fumigatus [96]

 Fusarielins F. graminearum [158]

 Hexadehydroasterchrome A. fumigatus [185]

 Monodictyphenone A. nidulans [42]

 Neosartoricin N. fischeri [45]

Global regulator activation

 Endocrocin A. fumigatus [103]

 Fusaric acid F. verticillioides [34, 36]

 Hexadehydroasterchrome A. fumigatus [185]

 ML-236B P. citrinum [8]

 Terrequinone A A. nidulans [25, 28]

 Tyrosine-derived alkaloids A. flavus [59]

Histone and protein modification

 2,4-Dihydroxy-3-methyl-6-(2-oxopropyl)benzaldehyde A. nidulans [68]

 Asperthecin A. nidulans [165]

 Atlantinones A and B P. citreonigrum [171]

 Chladochromes F and G Cladosporium cladosporioides [180]

 Lunalides A and B Diatrype disciformis [180]

 Monodictyphenone A. nidulans [23, 42, 144]

 NRPS9- and NRPS11-derived metabolites A. nidulans [101]

 Nygerone A A. niger [77]

 Orsellinic acid/F9775 A. nidulans [23, 42, 144]

Culture conditions

 Aspernidine A and B A. nidulans [150]

 Aspoquinolone A–D A. nidulans [148]

 Bikaverin F. fujikuroi [179]

 Fumicycline A and B A. nidulans [96]

 Fusarubins F. fujikuroi [164]

 Gibberellins F. fujikuroi [27]

 Isoflavipucines A. flavus [69]

 Monodictyphenone A. nidulans [149]

 Nidulanin A A. nidulans [4]

 Orsellinic acid A. nidulans [145, 152]

 Penicillin/cephalosporin A. nidulans/P. chrysogenum [31]

Heterologous expression

Donor organism Heterologous host

6-Methylsalicylic acid A. terreus/P. patulum A. nidulans, E.coli, S. cerevisiae [63, 89]

Asperfuranone A. terreus A. nidulans [41]

Citrinin Monascus purpureus A. oryzae [143]

Fumitremorgin A. fumigatus E. coli, S. cerevisiae [71, 72, 112, 161]

Mycophenolic acid P. brevicompactum A. nidulans [74]

Neosartoricin C Trichophyton tonsurans A. nidulans [186]

Pyripyropenes A. fumigatus A. oryzae [84]

SMA76a/pre-bikaverin F. fujikuroi E. coli [110]

Squalestatin Phoma sp. A. oryzae [50]
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[101, 121, 123, 131, 135, 171, 180]. Specifically, deletion of 
a component of the complex involved in H3K4 methylation 
resulted in the identification of the monodictyphenone [23, 
42, 144] and orsellinic acid/F9775 [23, 42, 144] gene clus-
ters, respectively. In conjunction with these results, apply-
ing a chemical inhibitor of histone deacetylases to A. niger 
cultures led to the identification of the novel secondary 
metabolite nygerone A, but identification of the correspond-
ing gene cluster awaits experimental proof [77] (Table 1).

Similarly, deletion of sumO encoding the only sumoyla-
tion gene in A. nidulans enabled the identification of the 
asperthecin gene cluster [165] and deletion of csnE encod-
ing a protein of the COP9 proteasome resulted in identifica-
tion of the dba gene cluster and its respective PKS-derived 
natural product [68] (Table 1).

Culture conditions

It has long been known that culture conditions, including 
nutrient source, ambient pH, redox status, co-cultivation with 
other organisms, light and temperature conditions, can alter 
the metabolome significantly [184]. The best understood 
examples of the impact of environmental conditions that 
affect secondary metabolism are the pH-dependent expres-
sion of the penicillin/cephalosporin genes clusters [31] and 
the nitrogen-dependent expression of the gibberellin gene 
cluster [27]. Change of culture conditions resulted in activa-
tion of aspoquinolones and aspernidine in A. nidulans, but 
no responsible cluster could be identified, respectively [148, 
150]. Specific approaches where the promoter of the back-
bone gene of interest was fused to a reporter gene led to iden-
tification of producing culture conditions for isoflavipucines 
in A. terreus [69] and phylogenetic analysis in conjunction 
with modifying culture conditions enabled the identification 
of the fusarubin gene cluster in F. fuikuroi [164] (Table 1).

The coupling of growth on different media with genome-
wide expression and/or protein data has been exploited to 
identify optimal culture conditions for activation of orsell-
inic acid and monodictyphenone pathways [145, 149] that 
had previously been identified through chromatin remodel-
ling mutants [23]. Similar genomic approaches were used 
to accurately demarcate known gene clusters and identify 
the previously cryptic two-loci gene cluster responsible for 
nidulanin A production in A. nidulans [4] and also led to 
demarcation of known and novel gene clusters in F. fujikuroi 
[178]. Co-cultivation of A. nidulans with a bacterial species 
in combination with expression and histone profiling showed 
that expression of the orsellinic acid pathway is triggered by 
co-cultivation most likely through histone modifications [23, 
122, 152]. A similar approach in A. fumigatus led to induc-
tion of neosartoricin/fumicycline B production [96] which 
had previously been activated by overexpressing the path-
way-specific Zn(II)2Cys6 transcription factor [45] (Table 1).

Expression of gene clusters in non‑natural hosts

Another method to elucidate the identity of a fungal natural 
product is to express the desired gene cluster in a differ-
ent host. This synthetic biology approach was first estab-
lished for expressing single cluster genes in order to assess 
their enzymatic functions during the biosynthetic process. 
For example, genes have been expressed for assessment 
of enzymatic function in A. nidulans, A. oryzae, Saccha-
romyces cerevisiae or Escherichia coli [50, 63, 71, 72, 74, 
89, 91, 110, 112, 141–143, 153, 161]. The first complete 
reconstructions of whole secondary metabolite pathways 
were achieved by subsequently introducing the genes of the 
tenellin, penicillin, pyripyropene and aphidicolin pathways, 
respectively, in A. oryzae [64, 76, 84, 117]. Yeast recom-
binational cloning methodology [127] has recently been 
utilized to clone entire gene clusters (including activation 
of specific Zn(II)2Cys6 transcription factors by promoter 
replacement) and to transform A. nidulans with these [186]. 
Another approach complementary to that of yeast cloning 
was the use of fusion PCR [125, 166] to express an entire 
heterologous gene cluster in A. nidulans strain [41] (Table 
1). This latter work was particularly productive as the het-
erologous cluster was placed in an engineered A. nidu-
lans strain deficient of its own secondary metabolite gene 
clusters in order to avoid interfering chemical compounds 
thereby easing the structure elucidation of the heterologous 
natural product.

Modification of gene clusters leading to unnatural 
products

Mining of fungal genomes and activation of cryptic sec-
ondary metabolite gene clusters by applying the strategies 
previously outlined will aid the identification of novel natu-
ral products. However, not every end product that can be 
found has the desired bioactivity. Therefore engineering of 
the novel metabolic pathway can improve the accumula-
tion of either naturally occurring intermediates or addition-
ally modified molecules. The first successful application 
was the manipulation of the penicillin/cephalosporin path-
way by additionally integrating bacterial-derived enzyme-
encoding genes in order to modify product spectrum [37, 
75, 137, 174]. Modification of the fumitremorgin pathway 
of A. fumigatus by either overexpressing the backbone 
enzyme in the natural host [112] or by expressing partial 
pathway genes in A. nidulans increased yields of biological 
active intermediates [113]. A genome-wide approach was 
recently conducted by individually overexpressing each 
non-reducing PKS in A. nidulans, leading to identification 
of their putative products that in most cases will be pathway 
intermediates [1]. Similar pathway disruption approaches 
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of several pathways in different filamentous fungi lead to 
accumulation of previously unobserved intermediates [27, 
51, 60, 62, 103, 147, 164].

Additionally, the modular nature of PKS and NRPS 
enzymes can be exploited by exchanging specific domains 
between these backbone enzymes that will result in new 
“unnatural” chemical scaffolds thereby increasing chemi-
cal and putatively bioactive diversity. The first success-
ful example of such a engineered backbone enzyme was 
reported by swapping domains of the backbone genes 
responsible for tenellin and desmethylbassianin produc-
tion in Beauveria bassiana, respectively, and expressing 
the engineered enzymes in A. oryzae [58]. In A. nidulans 
swapping domains of the asperfuranone and sterigmato-
cystin backbone enzymes resulted in production of new 
metabolites [106]. Engineering of the PKS responsible for 
hypothemycin production in Hypomyces subiculosus and 
subsequent expression in S. cerevisiae produced an unnatu-
ral diastereomer of the natural product [188].

Future perspectives

The improvements in genome sequencing, particularly 
next-generation sequencing, ensure a massive increase in 
the availability of fungal genomes. For example, the 1,000 
fungal genomes undertaken by the Department of Energy 
(DOE) Joint Genome Institute (JGI) is just one example 
of a large-scale sequencing effort [70]. Undoubtedly, these 
genomes will fuel concomitant research efforts in elucidat-
ing the bioactive natural products produced by these fungi. 
Not only do we expect efforts to continue as reviewed in 
this article but likely novel and quicker ways to unlock the 
fungal treasure chest. It is hard to predict future develop-
ments but three approaches which we speculate will emerge 
in fungal biology are to express artificial gene clusters in 
fungi, as has been recently shown for actinomycetes [129, 
155], to express entire heterologous clusters in one clon-
ing step, for example using bacterial artificial chromosomal 
(BAC) technology [105] and to engineer the precursor pool 
availability [181].
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